Carnegie Mellon University

An Annotation Similarity Model in Passage Ranking for Historical Fact Validation

Jun Araki and Jamie Callan

Language Technologies Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Answer

candidates

Introduction

Background

 Passage retrieval is a core component for question answering (QA) (Tellex et al., 2003; Cui et al., 2005; Ferrucci et al., 2010; Krikon et al., 2012).

Problems

 Many passage retrieval approaches used in QA cannot check linguistic and semantic types annotated in passages at query time (Bilotti et al., 2010; Bilotti et al., 2007).

Annotation Similarity Model

- Idea: Making use of annotations of arbitrary types to boost up answer-bearing passages at query time in an unsupervised manner.
- Motivating example: Cook explored Oceania during the 18th century.
 A passage from http://en.wikipedia.org/wiki/History_of_Oceania:

James Cook explored the Pacific islands and the east coast of Australia in the 18th century.

- NTCIR-11 QA Lab: real-world university entrance exam questions
- We focus on multiple-choice true-false questions on world history.
- The correct answer does not appear anywhere in the corpus.
- Example (the correct answer is 1):

 ..., most of those who excelled in culture and the arts were those who had passed the Imperial examinations, but in the (2) Ming period, there was a shift toward ...
 Introductory text

 Question 2. From 1-4 below, choose the most appropriate sentence
 Introductory text

concerning events that occurred during the period referred to in the underlined portion (2).

1. Japanese silver circulated in China.

2. A Buddhist sect called Zen was created.

- 3. The play "The Story of the Western Wing (Xixiangji)" was created.
- 4. The capital was established in Lin'an (present-day Hangzhou).
- The questions are strongly or weakly dependent on their corresponding introductory text.

- We intend that an annotation similarity score gives a small amount of similarity adjustment to the bag-of-words similarity score.
- Given sentence *s* and passage *p*, the final score is: $score(s, p) = sim_{BOW}(s, p) \times sim_{ANN}(s, p)$ $= TF-IDF(s, p) \times (1 + \alpha sim(G_s, G_p, T_c))$
- For the annotation similarity score, we incorporate the annotation graph model in (Bilotti et al., 2010) and vertex/edge overlap (Papadimitriou et al., 2010).

Algorithm 1 Annotation similarity model. Input: $G_1 = (E_1 = \{(te_1)\}, R_1 = \{(tr_1)\}, T)$ Input: $G_2 = (E_2 = \{(te_2)\}, R_2 = \{(tr_2)\}, T)$ Input: $T_c \in T$ Output: annotation similarity score 1: $E'_1 \leftarrow \{(te_1)\}$ where $te_1 \in T_c$ 2: $E'_2 \leftarrow \{(te_2)\}$ where $te_2 \in T_c$ 3: $R'_1 \leftarrow \{(tr_1)\}$ where $tr_1 \in T_c$ 4: $R'_2 \leftarrow \{(tr_2)\}$ where $tr_2 \in T_c$ 5: return $2\frac{|E'_1 \cap E'_2| + |R'_1 \cap R'_2|}{|E'_1| + |E'_2| + |R'_1| + |R'_2|}$

Notations

- *G*: an annotation graph
- E: a set of elemental annotations
- R: a set of relational annotations
- T: a type system
- T_c : a subset of types in T
- *te*: an element type in *T*
- *(te)*: an elemental annotation
- *tr*: a relation type in *T*
- (tr): a relational annotation

Passage Ranking for Historical Fact Validation

Definitions

- A historical fact is a sentence that tells us historically correct information.
- Example: Japanese silver circulated in China during the Ming period.
- Historical fact validation is a subtask to determine whether or not a given sentence is a historical fact.

Assumptions

- We ensure the historical correctness by a reference to information sources that we rely on.
- Wikipedia is abundant of historical facts, and highly likely to cover historical topics of questions in the exam corpus.

Architecture: three-stage passage ranking

Idea: If a system takes a given sentence as a query (historical hypothesis), and retrieves and ranks a passage (historical evidence) with a reasonably high score, then the system regards the sentence as a historical fact.

Experimental Results

- Date set: 36 historical facts from 26 true-false questions
- Experimental conditions: $N_d = 1000, N_p = 10, N_s = 3, \alpha = 0.1$
- T = {part-of-speech, named entity, dependency, semantic argument}, provided by Stanford CoreNLP and ClearNLP

T_c	P@1	MRR
(Baseline)	0.3611	0.4609
Named entity (person)	0.3889	0.4801
Dependency (nsubj, dobj)	0.3889	0.4755
Semantic argument (A0, A1)	0.3611	0.4639

P@1 is the percentage ofhistorical facts where an answerbearing passage is ranked at the first position. Mean reciprocal rank (MRR) is given as: $MRR = \frac{1}{|Q|} \sum_{r=1}^{|Q|} \frac{1}{rank(q)}$

- Named entities (person type) gain the best improvement; names of historic figures are a key element to amplify TF-IDF effects.
- Semantic argument annotations are sparse; a sentence and a passage barely have the same argument structure over the same tokens.

- We use English Wikipedia (2014-02-03 dump) as source data.
- We use the TF-IDF similarity in stage 1 and 2.

Conclusion

Novelties of this work

- We proposed a passage ranking model that can incorporate annotations of any type along with traditional retrieval models.
- The model improved passage ranking for QA on world history with named entity and dependency annotations.

Future work

- Refining the model so it can benefit from a combination of different annotations, including WordNet synsets and temporal relations
- Implementing a true-false judgment component for building an endto-end world history QA system