DELUCIONQA: DETECTING HALLUCINATIONS IN DOMAIN-SPECIFIC QUESTION ANSWERING

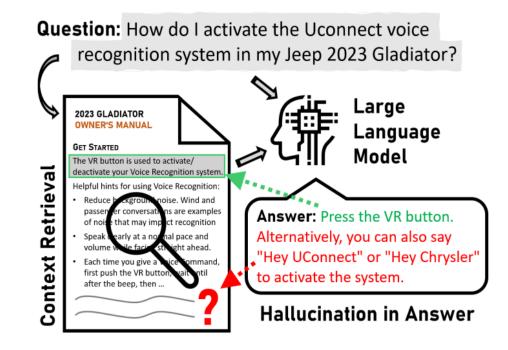
MOBASHIR SADAT^{1*}, ZHENGYU ZHOU², LUKAS LANGE², JUN ARAKI², ARSALAN GUNDROO², BINGQING WANG², RAKESH R MENON^{3*}, MD RIZWAN PARVEZ², ZHE FENG²

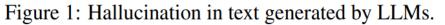
> ¹Computer Science, University of Illinois Chicago ²Bosch Research North America & Bosch Center for Artificial Intelligence (BCAI) ³UNC Chapel-Hill

> > *Work done during an internship at Bosch Research North America.

Motivation

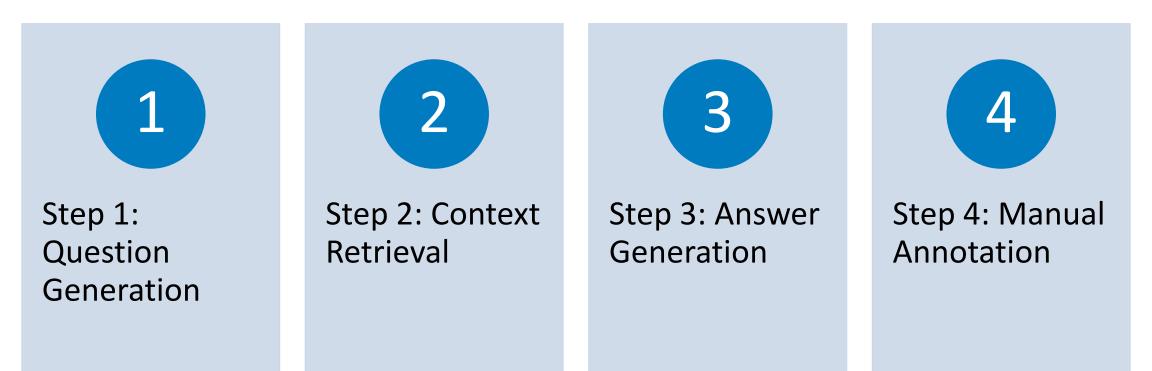
- LLMs have a key weakness: Hallucination
 - Large Language Models (LLMs) are powerful, but they may hallucinate, i.e., generating non-factual content.
- Retrieval-Augmented LLMs still hallucinate
 - Hallucination can be relieved by leveraging information retrieval (IR) to provide additional context to LLMs, but it still happens from time to time (See an example in Figure 1)
- The problem is critical for question-answer (QA) applications requiring high reliability
 - A hallucinated answer delivered to user may raise significant liability concerns (e.g., vehicle damage, driver safety).





Contributions

- We facilitate the investigation of the hallucination phenomenon in retrieval-augmented LLMs for domain-specific applications with high reliability requirements, by:
 - Collecting and presenting a large QA dataset, named DelucionQA, for this study
 - Without loss of generality, the dataset adopts car-manual QA as a domain-specific representative task, and a state-of-the-art GPT model as a representative LLM.
 - Multiple retrieval methods are implemented for QA with retrieval-augmented LLM.
 - The occurrences of hallucination in answers are labeled by crowdsourcing workers
 - Proposing a set of hallucination detection approaches to serve as baselines for our dataset
 - The best performing baseline method shows a Macro F1 of only 71.09%, illustrating the challenging nature of the task.
 - Providing insights on the causes and types of hallucinations



Step 1: Question Creation

- Automatic question generation by T5 model
 - A set of candidate questions are automatically generated based on the publicly available car-manual of Jeep 2023 Gladiator using a multi-task T5 model (Raffel et al., 2020)
- Manual refinement of the question set
 - The candidate questions are manually polished or filtered out if they are not realistic.
 - Additional relevant questions that are not generated by the T5 model are manually added.

Step 2: Context Retrieval

- IR techniques are used to retrieve relevant context for each question and <Question, Context> pairs are constructed.
- We use the following four IR methods to retrieve a variety of context for each question:
 - Sparse retrieval
 - Top-K ensemble retrieval
 - Top-1
 - o Top-3
 - Adaptive ensemble retrieval

Step 3: Answer Generation

- We choose the OpenAI ChatGPT model as a representative LLM because it is arguably the most advanced, best performing, and widely accessible LLM at the time of writing our paper.
- ChatGPT is prompted with each <Question, Context> pair constructed in Step 2 to generate an answer to the question based on the provided context.
- This step results in a large number of <Question, Context, Answer> triples.

Step 4: Manual Annotation

- Amazon Mechanical Turk platform is used to assign labels for each sentence in the answer indicating whether it is (1) *supported, (2) conflicted,* or (3) *neither supported not conflicted* by the context in each triple.
- Based on the sentence level labels, a sample level label is assigned to each triple as follows:
 - Hallucinated: if any of the sentence level labels in the triple is *conflicted* or *neither supported not conflicted*.
 - Not Hallucinated: if all sentence level labels in the triple are *supported*.

Dataset Splits and Statistics

Split	#Ques	#Triples	#Hal	#Not Hal
TRAIN	513	1,151	392	759
DEV	100	216	94	122
TEST	300	671	252	419
TOTAL	913	2,038	738	1,300

Table 1: Number of unique questions, number of triples and label distribution in each split of DELUCIONQA. Here, Ques: Question and Hal: Hallucinated.

Hallucination Detection Approaches (Baselines)

Sim–cosine: based on sentence-level embedding similarity between the context and the answer.

Sim–overlap: based on sentence-level overlap between the context and the answer.

Sim-hybrid: a hybrid of Sim-cosine and Sim-overlap.

Keyword-match: based on the ratio of keywords match between the context and the answer.

Performance of Proposed Approaches

	Train			Dev			Test		
Method	Hal	N-Hal	Overall	Hal	N-Hal	Overall	Hal	N-Hal	Overall
SIM-COSINE	63.18	74.73	70.03	72.45	77.12	74.78	63.84	73.55	69.45
SIM-OVERLAP	68.47	82.72	75.59	73.51	80.16	76.84	63.89	78.28	71.09
Sim-hybrid	68.73	83.16	75.94	73.51	80.16	76.84	63.33	78.29	70.81
KEYWORD-MATCH	30.25	77.47	53.86	31.58	69.57	50.57	31.23	74.31	52.77

Table 2: Class-wise F_1 scores (%) and overall Macro F_1 scores (%) of the baseline hallucination detection methods on the three splits of DELUCIONQA. Here, Hal: Hallucinated, N-Hal: Not Hallucinated.

Case Study

Based on our qualitative analysis, we identify the main reasons for different cases of hallucination:

- P1: using learned knowledge instead of context
- P2: unrelated information in retrieval results
- P1 and P2 can occurring jointly.

Note: Whether or not an LLM hallucinates partially depends on how strongly it is biased towards the prelearned knowledge.

Question	Answer			
How do I activate the UConnect voice	Alternatively, you can also say "Hey UConnect" or "Hey Chrysler" to activate the system			
recognition system?	or say "Hey UConnect" followed by a voice command			
What does emission inspection check?	 The inspection also checks for any issues that may cause the MIL to be illuminated during normal vehicle operation The inspection also checks for fluid level, exhaust system, and cat- alytic converter maintenance. 			
How far can I use key fob to lock/unlock the door?	 in general, the range can be up to several hundred feet from distances up to 66 ft (20 m) using the key fob 			

Table 3: Examples of answers generated for given questions, with hallucinated parts in **bold**.

Conclusion

- This work addresses hallucination in answers generated by LLMs in retrieval-augmented QA, focusing on a domain-specific scenario where high reliability is required.
- We present a dataset (DelucionQA) containing 2,038 samples, together with a number of baseline hallucination detection approaches, to facilitate research in this direction.
- Qualitative analysis is also conducted to provide insights into why hallucination occurs.
- While DelucionQA is constructed from a single representative domain (car manual) with one representative LLM (ChatGPT), we believe that the insights obtained and the approaches developed can be extended to other domains/LLMs as well.
- Our future work will include diversifying our study to multiple domains/LLMs, and developing more advanced hallucination detection/handling approaches.

Thank you!

