DelucionQA: Detecting Hallucinations in Domain-specific Question Answering Mobashir Sadat, Zhengyu Zhou, Lukas Lange, Jun Araki, Arsalan Gundroo, Bingqing Wang, Rakesh R Menon, Md Rizwan Parvez, Zhe Feng

Motivation

- Large Language Models (LLMs) are powerful, but they have a key weakness: Hallucination (i.e., generating non-factual content).
- Retrieval-Augmented LLMs still hallucinate. The problem is critical for question-answer (QA) applications requiring high reliability

1		2			3			4
Question		Context		Answer		Manual		
Genera	tion	Retriev	/al	G	enerat	ion	Annotation	
	Split	#Ques	#Trip	les	#Hal	#Not	Hal	
	TRAIN	513	1,15	51	392	75	9	•
	DEV	100	210	5	94	12	2	
	TEST		671	1	252	41	9	
	TOTAL	913	2,038		738	1,300		
T. 1	ble 1. Nu	umber of u	nique o	ques	tions, nu	ımber	of tri	oles

Contact: msadat3@uic.edu; Zhengyu.Zhou2@us.bosch.com Dataset Link: https://github.com/boschresearch/DelucionQA

Results

Method	Hal	N-Ha
SIM-COSINE		
Train	63.18	74.7
Dev	72.45	77.1
Test	63.84	73.5
SIM-OVERLAP		
Train	68.47	82.7
Dev	73.51	80.1
Test	63.89	78.2
SIM-HYBRID		
Train	68.73	83.1
Dev	73.51	80.1
Test	63.33	78.2
KEYWORD-MATCH		
Train	30.25	77.4
Dev	31.58	69.5
Test	31.23	74.3

Table 2: Class-wise F₁ scores (%) and overall Macro F_1 scores (%) of the baseline hallucination detection methods on the three splits of DELUCIONQA. Here, Hal: Hallucinated, N-Hal: Not Hallucinated.

Large Language Model

Answer: Press the VR button. Alternatively, you can also say "Hey UConnect" or "Hey Chrysler'

Hallucination in Answer

Overall

70.03

74.78

69.45

75.59

76.84

71.09

75.94

76.84

70.81

53.86

50.57

52.77

Contributions

- Construct/release a dataset, "DelucionQA", to facilitate hallucination research for retrievalaugmented LLM-based domain-specific QA.
 - Without loss of generality, car-manual QA (with high reliability needs) and ChatGPT are chosen as the representative domain and LLM, respectively
- Propose baseline hallucination detection methods
- Provide insights on causes/types of hallucinations

Conclusion

- •We release a new dataset, together with baseline approaches and analyses, to facilitate the study of hallucination in retrieval-augmented QA applications with high reliability requirements.
- While DelucionQA is constructed for the car-manual domain with ChatGPT, the insights obtained and the approaches developed can be extended to other domains/LLMs as well.
- Future work will involve incorporating other domains/LLMs, and developing more advanced hallucination detection/handling approaches.

MUNC ILLINOIS CHICAGO NLP