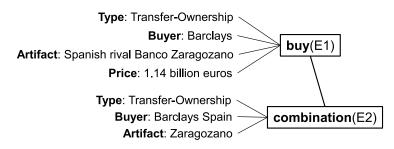
Joint Event Trigger Identification and Event Coreference Resolution with Structured Perceptron

Jun Araki and Teruko Mitamura

Language Technologies Institute School of Computer Science Carnegie Mellon University

September 21, 2015



Carnegie Mellon University Language Technologies Institute

Semantic and discourse aspects of events

- $\bullet~\mbox{Events}\Rightarrow\mbox{who}~\mbox{did}$ what to whom where and when
- Event coreferences \Rightarrow discourse connections to form a coherent story

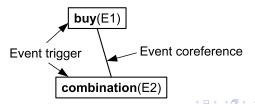
British bank Barclays agreed to **buy**(E1) Spanish rival Banco Zaragozano for 1.14 billion euros. The **combination**(E2) of the banking operations of Barclays Spain and Zaragozano will bring together two complementary businesses.

• Many NLP applications:

- Question answering [Bikel+ 2008; Berant+ 2014]
- Text summarization [Li+ 2006] etc.

Semantic and discourse aspects of events

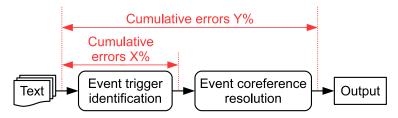
- $\bullet~\mbox{Events}\Rightarrow\mbox{who}~\mbox{did}$ what to whom where and when
- Event coreferences \Rightarrow discourse connections to form a coherent story


British bank Barclays agreed to **buy**(E1) Spanish rival Banco Zaragozano for 1.14 billion euros. The **combination**(E2) of the banking operations of Barclays Spain and Zaragozano will bring together two complementary businesses.

- Many NLP applications:
 - Question answering [Bikel+ 2008; Berant+ 2014]
 - Text summarization [Li+ 2006] etc.

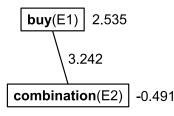
• We follow the definitions in the ProcessBank corpus [Berant+ 2014]

Definition
An abstract representation of a change of state,
independent from particular texts
Main word(s) in text, typically a verb or a noun
that most clearly expresses an event
Participants or attributes in text, typically
nouns, that are involved in an event
A clause in text that describes an event, and
includes both a trigger and arguments
A linguistic phenomenon that two event
mentions refer to the same event



Research problem

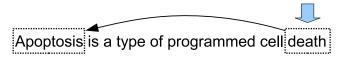
- Event extraction and event coreference resolution have been addressed separately
- Some event triggers are relatively difficult to be identified


British bank Barclays agreed to **buy**(E1) Spanish rival Banco Zaragozano for 1.14 billion euros. The **combination**(E2) of the banking operations of Barclays Spain and Zaragozano will bring together two complementary businesses.

• Pipeline models propagate errors \Rightarrow normally Y > X

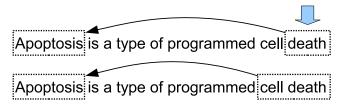
Joint model with event graph learning

 We formalize event trigger identification and event coreference resolution as a problem of document-level joint structured learning

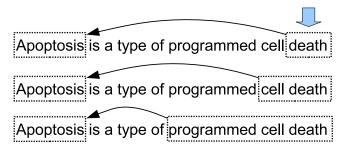

- x: input document
- y: event graph associated with x
 - Node $v \in V(y)$: event trigger
 - Edge $e \in E(y)$: event coreference link
- Node- and edge-factored scoring:

$$score(y) = \sum_{v \in V(y)} score(v) + \sum_{e \in E(y)} score(e)$$
$$= \sum_{v \in V(y)} \mathbf{w} \cdot \Phi(v) + \sum_{e \in E(y)} \mathbf{w} \cdot \Phi(e)$$

- Employ averaged perceptron [Collins 2002] for training
- Use 27 feature templates with a range of tools for feature extraction


Our joint decoding

- Goal: output the best event graph \hat{y} that maximizes score(y)
- Key idea: combine the following with multiple-beam search
 - Segment-based decoding [Zhang+ 2008a]
 - Uses previous beam states to form segments from previous positions
 - Computes the *k*-best partial structures (event subgraphs)
 - Best-first clustering [Ng+ 2002]
 - Selects the most likely antecedent for each trigger

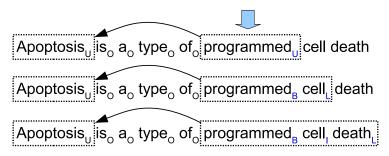

Our joint decoding

- Goal: output the best event graph \hat{y} that maximizes score(y)
- Key idea: combine the following with multiple-beam search
 - Segment-based decoding [Zhang+ 2008a]
 - Uses previous beam states to form segments from previous positions
 - Computes the k-best partial structures (event subgraphs)
 - Best-first clustering [Ng+ 2002]
 - Selects the most likely antecedent for each trigger

Our joint decoding

- Goal: output the best event graph \hat{y} that maximizes score(y)
- Key idea: combine the following with multiple-beam search
 - Segment-based decoding [Zhang+ 2008a]
 - Uses previous beam states to form segments from previous positions
 - Computes the *k*-best partial structures (event subgraphs)
 - Best-first clustering [Ng+ 2002]
 - Selects the most likely antecedent for each trigger

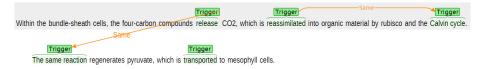
Other joint decoding which did not work well


- Some initial tries (alternative approaches):
 - Token-level sequential labeling with BILOU scheme
 - Event coreference can be explored only from complete assignments
 - This makes token-level sequential labeling complicated

Apoptosis_u is_o
$$a_o$$
 type_o of_o programmed_u cell death

- Recall-oriented pre-filtering of event trigger candidates
 - Gained 97% recall \Rightarrow 12,400 false positives
 - This makes it difficult to learn event triggers

Other joint decoding which did not work well


- Some initial tries (alternative approaches):
 - Token-level sequential labeling with BILOU scheme
 - Event coreference can be explored only from complete assignments
 - This makes token-level sequential labeling complicated

- Recall-oriented pre-filtering of event trigger candidates
 - Gained 97% recall \Rightarrow 12,400 false positives
 - This makes it difficult to learn event triggers

Experimental settings (1/2): ProcessBank corpus

• 200 paragraphs from a textbook in biology

- Event coreference is annotated as a link
- 13.4% of event triggers comprise multiple tokens
- Corpus statistics:

	Train	Dev	Test	Total
# of paragraphs	120	30	50	200
# of event triggers	823	224	356	1403
# of event coreferences	73	28	30	131

Experimental settings (2/2)

- Our baseline
 - Two-stage pipelined model using averaged perceptron
 - 1st stage: event trigger identification
 - 2nd stage: event coreference resolution
 - Same parameters and feature templates as the joint model
- Parameters
 - Number of iterations T = 20
 - 20-iteration training almost reached convergence
 - Maximum length of an event trigger $I_{max} = 6$ tokens
 - Specifies how far one can go back in the joint decoding
 - The longest event trigger has 6 tokens in the corpus
 - Beam size k = 1
 - A larger beam size did not improve the performance
 - This seems to be due to the small size of dev data

Experimental results

- Evaluation using a reference scorer [Pradhan+ 2014; Luo+ 2014]
- Results of event trigger identification

System	Recall	Precision	F1	
Baseline (1st stage)	57.02	64.85	60.68	
Joint	55.89	65.24	60.21	

• Results of event coreference resolution

	MUC			B ³			CEAF _m		
System	R	Р	F1	R	Р	F1	R	Р	F1
Baseline (2nd stage)									
Joint	20.00	37.50	26.08	53.37	63.36	57.93	53.93	62.95	58.09

	CEAF _e				CoNLL		
System	R	Ρ	F1	R	Ρ	F1	F1
Baseline (2nd stage)	52.68	63.14	57.44	30.13	25.10	25.05	45.66
Joint	55.06	62.11	58.38	27.51	38.43	31.91	47.45

Observations

- Event coreference resolution
 - The joint model outperforms the baseline
 - Precision $\nearrow \Leftarrow$ false positives \searrow
 - Explores a larger number of false positives in its search process
 - Learns to penalize false positives more adequately
- Event trigger identification
 - The joint model does not outperform the baseline
 - This seems to be due to the small size of the corpus
- Some error cases
 - Difficult in the both tasks

When the cell is stimulated, gated channels open that facilitate Na+ diffusion(E5). Sodium ions then "fall" (E6) down their electrochemical gradient, \dots

The next seven steps decompose(E7) the citrate back to oxaloacetate. It is this regeneration(E8) of oxaloacetate that makes this process a cycle.

Event extraction

- Pipelined approaches for event triggers and arguments [Ji+ 2008; Liao+ 2010; Hong+ 2011]
- Approaches to joint dependencies [Poon+ 2010; McClosky+ 2011; Riedel+ 2011; Li+ 2013; Venugopal+ 2014]

• Event coreference resolution

- As a starting point, most work uses event triggers from:
 - Human annotation in a corpus [Bejan+ 2014; Liu+ 2014]
 - Output of an event extraction system [Lee+ 2012]
- Joint learning for event arguments and coreferences [Berant+ 2014]

• Joint structured learning in NLP

- Idea: capturing interactions between two relevant tasks via structure
 - Word segmentation and POS tagging [Zhang+ 2008b]
 - POS tagging and dependency parsing [Bohnet+ 2012]
 - Dependency parsing and semantic role labeling [Johansson+ 2008]
 - Extraction of event triggers and arguments [Li+ 2013]
 - Extraction of entity mentions and relations [Li+ 2014]

Conclusion and future work

Conclusion

- The first work that solves event trigger identification and event coreference resolution simultaneously
 - Combines the segment-based decoding and best-first clustering
- The proposed model outperformed a pipelined model in event coreference resolution

Future work

- Use larger corpora while reducing training time
- Incorporate other components of events
 - Event types, event arguments, and other relations
- Neural network based approaches to the joint dependencies