Carnegie Mellon University

Open-Domain Event Detection using Distant Supervision

Contributions

- We introduce a new paradigm of open-domain event detection. We target events in unrestricted domains with wider coverage than prior work.
- Our **distant supervision method** is able to generate highquality training data. Despite no direct supervision, the distantly supervised model outperforms supervised models in both in-domain and out-domain settings.
- We release the new corpus of human-annotated events in 10 different domains such as geology and economics.

Introduction

- Events are a key component for natural language understanding.
- **Goal**: Detecting all kinds of events regardless of domains.
- **Motivation**: We need automatic event identification techniques with larger, wider, and more consistent coverage in order to advance natural language applications such as open-domain question answering (Sauri et al., 2005; Pradhan et al., 2007).

Research Problems

- Limited coverage of events
- Most work focuses limited (closed-domain) event types, e.g., MUC, ACE, TAC KBP, GENIA, BioNLP, and ProcessBank.
- Some work has conceptually different focuses, e.g., PropBank, NomBank, and FrameNet.
- Other work focuses on limited syntactic types, e.g., OntoNotes, TimeML, ECB+, and RED.
- Lack of training data
- Human annotation of events in the open domain is expensive.

Definition of events

We use two notions from semantic and syntactic perspectives: • Semantic perspective: **Eventualities** (Bach, 1986)

- states: notions that are durative and changeless, e.g., want, own, love, resemble.
- processes: notions that are durative and do not have any explicit goals, e.g., walking, sleeping, raining.
- actions: notions that have explicit goals or are momentaneous happenings, e.g., build, walk to Pittsburgh, recognize, arrive, clap.
- Syntactic perspective: **Event nuggets** (Mitamura et al., 2015)
- A semantically meaningful unit that expresses an event.
- Can be either a single word (verb, noun, or adjective) or a phrase which is continuous or discontinuous.

Jun Araki and Teruko Mitamura Language Technologies Institute, School of Computer Science, Carnegie Mellon University

Assumption: Semantically adequate correspondence between components of eventualities and WordNet senses.

- state²: the way something is with respect to its main attributes
- process⁶: a sustained phenomenon or one marked by gradual changes through a series of states
- event $_n^1$: something that happens at a given place and time

Examples (events vs. non-events):

- (1) His **payment** was late.
- (2) His payment was \$10.
- (3) Snipers were **picking** them **off**.
- (4) He **picked** an apple off the tree.

Enhancements with Wikipedia

- Problem: WordNet often lacks current terminology and proper nouns.
- (5) Property damage by **Hurricane Katrina** around \$108 billion.
- Idea: Leverage the first sentence of a Wikipedia article.
- "Hurricane Katrina was an extremely destructive and deadly tropical cyclone that is tied with Hurricane Harvey of 2017 as the costliest hurricane on record." (the underline portion: a Wikipedia gloss)
- Methods:
- (A) Heuristics-based: HeadLookup
- Get the syntactic head of a Wikipedia gloss.
- Look up the head's sense in WordNet.
- (B) Learning-based: Gloss classification
- Collect gloss dataset $D = D_+ \cup D_-$ automatically from WordNet. • $D_+ = \{\text{gloss whose sense is under state}_n^2, \text{process}_n^6, \text{ or event}_n^1\}$ • $D_{-} = \{ \text{all the other glosses of WordNet nouns} \}$
- Train binary classifiers on D.

Learning for event detection

- Generate training data from SemCor (Miller et al., 1993). • Formalize event detection as a sequence labeling problem.
- Train a BLSTM on the generated training data by minimizing crossentropy loss with a tagging scheme {B, I, DB, DI, O}.

Distantly Supervised Event Detection

Results and Future Work

Dataset: Open-domain event corpus (SW100)

- 5397 event nuggets in 10 different domains.
- (strict match) and 90.3% (partial match).

Results

- attention (Lin et al., 2017)
- WordNet-based algorithm (RULE)

<u></u>									
Model	WordInet	<u>vvikipedia</u>	مر 1 1	Strict			Partial		
HeadLookup	77.80	73.50	Model	Р	R	F1	Р	R	F1
BoW-LR	79.50	73.00	VERB (Baseline)	79.5	51.7	62.7	95.4	62.0	75.2
DAN	83.15	64.00	PRED (Baseline)	55.1	62.4	58.5	67.6	76.6	71.8
GC-BLSTM	90.10	80.00	RULE	80.1	77.0	78.5	89.0	85.5	87.2
GC-BLSTM-Attn	91.65**	85.00*	RULE-WP-HL	80.5	77.5	79.0	88.6	85.3	86.9
Table: Accuracy	of gloss		RULE-WP-GC	80.8	77.7	79.2	89.1	85.7	87.3
				1					

classification (*: p < 0.05; **: p < 0.005).

- Performance of our distantly supervised model
- The model outperforms supervised models.

of training examples

Figure: Performance of distantly supervised event detection on SW100.

Future Work

- strative determiners.

Acknowledgements

This publication was partly made possible by grant NPRP-08-1337-1-243 from the Qatar National Research Fund (a member of the Qatar Foundation).

Language Technologies Institute

• Manually annotated 100 articles in Simple English Wikipedia.

• Inter-annotator agreement (average of pairwise F1 scores): 80.7%

• <u>Gloss classifiers</u>: Bag-of-words model with logistic regression, deep average network (Iyyer et al., 2015), BLSTM with (or without) self-

• <u>Rule-based event detectors</u>: All single-word main verbs (VERB), all predicates extracted by PathLSTM (Roth and Lapata, 2016), our

> Table: Performance of rule-based event detection on SW100.

• The model performs better with larger synthesized training data.

_				
-	Setting	Model	S-F1	P-F1
-	In domain	BLSTM	73.8	85.9
-	m-domam	DS-BLSTM	76.1	88.0
	Out domain	BLSTM	67.9	82.8
	Out-uomam	DS-BLSTM	71.3	86.6
50000	Table: Result	s of event d	etectio	on
the supervised	(S-F1: Strict	F1, P-F1: I	Partial	F1).

• Conduct experiments on normal English text, e.g., newspaper articles. • Event coreference resolution to detect eventive pronouns and demon-