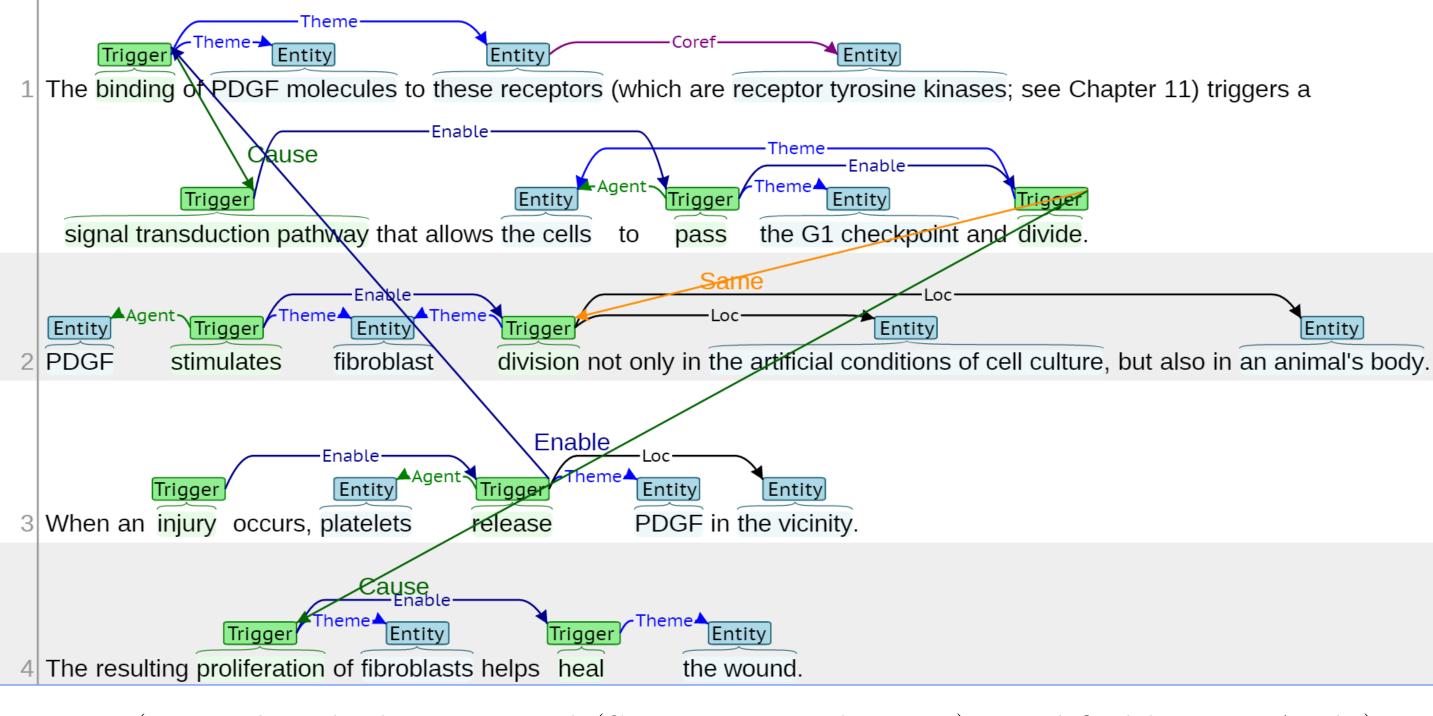


Contributions

- This is the first work to automatically generate questions from multiple sentences, involving specific inference steps such as coreference resolution and paraphrase detection.
- We present another approach which generates questions based on patterns extracted from relationships between events and entities.
- Our system also generates phrase-level distractors to challenge comprehension by using event-event relation annotations.

Introduction


- Goal: Automatic **question generation** (QG) for language learners.
- Our research can be useful to the task of creating exam questions and answers since automatic QG makes the task more efficient.
- **Higher-level questions** have more educational benefits for reading comprehension, as compared to simple factoid questions, e.g., (Anderson and Biddle, 1975; Andre 1979; Hamaker 1986).

Research Problems

- Existing QG systems generate questions from a single sentence, relying heavily on syntax and emphasizing grammaticality.
- The majority of questions generated from single sentences tend to be too specific and low-level, ending up essentially assessing the learners' ability to compare sentences.

ProcessBank corpus (Berant et al., 2014)

- 200 paragraphs from a biology textbook, with questions by biologists.
- We utilize human annotations of entities, events and relations.

(Viewed with the Brat tool (Stenetorp et al., 2012), modified by Jun Araki)

Generating Questions and Multiple-Choice Answers using Semantic Analysis of Texts

Jun Araki, Dheeraj Rajagopal, Sreecharan Sankaranarayanan, Susan Holm, Yukari Yamakawa, and Teruko Mitamura Language Technologies Institute, School of Computer Science, Carnegie Mellon University

Question Generation

Question Generation System 1 (QG1)

- Generate questions from multiple sentences using three semantic relations: event coreference, entity coreference, and paraphrases.
- Find answers using templates, and then construct questions.

Semantic relation	Question patterns	Answer	Questie
Event coreference	En1 ····► E1 ↓ P1. E2	En1	T1. W
	$E3 \rightarrow E1 \\ \downarrow \\ E2$	E3	T2. W su T3. W tr T4. W cle
	E1 → E3 P3. E2	E3	T5. W + T6. W
Entity coreference	En2 P4. En1 → E1	En2	T1. W <i>su</i>
Paraphrase	P5. En1 → E1	En1	

Examples (Pattern: P3)

- Question: "What is a result of the fibroblast division not only in the artificial conditions of cell culture, but also in an animal's body?"
- Answer: "Proliferation of fibroblasts"

Question Generation System 2 (QG2)

1. Extract generic patterns based on the relations between events and entities from a set of passages.

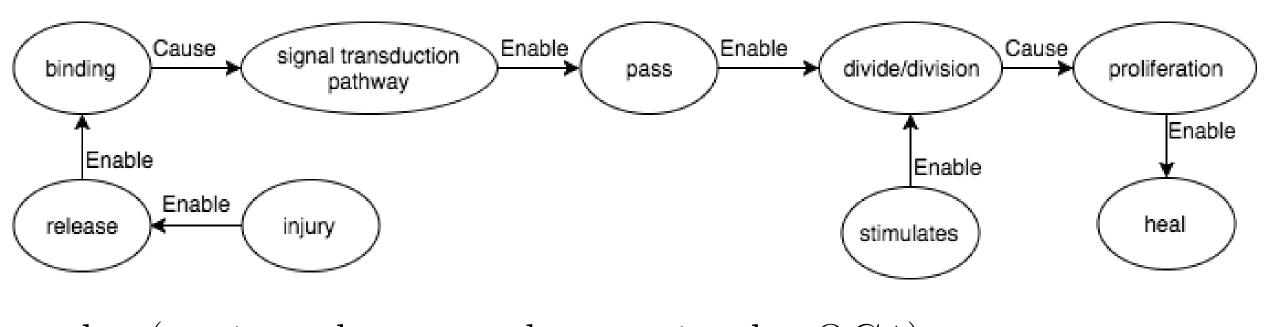
2. Apply the patterns to unseen passages and generate questions.

Question pattern	Question template
Entity <i>Result</i> Trigger	What event should occur before the <i>Trigger</i> of <i>Entity</i> ?
Trigger_1 Super Trigger_2	What would happen without <i>Trigger_1</i> in <i>Trigger_2</i> ?
Entity Theme Trigger	What would happen without the <i>Trigger</i> of <i>Entity</i> ?
Entity Location Trigger	Where was <i>Trigger</i> in <i>Entity</i> ?
Trigger_1 Cause Trigger_2	What is caused by <i>Trigger_1</i> ?

- *Enable* relations tend to produce questions that have answers
- *Theme* relations tend to produce questions that may or may not have answers due to their ambiguity

Examples

- Question: "What event enables division?", Answer: "PDGF."
- Question: "What happens because of PDFG release?", (No answer)


ion templates

Vhat [verbal trigger + subsequent]rguments]?

Vhat causes [nominal trigger +] ubsequent arguments]? Vhat makes it happen to [verbal] rigger + subsequent arguments]?Vhat makes it happen that *event* lause]?

Vhat is a result of *nominal trigger* subsequent arguments]? Vhat happens when [event clause]?

Vhat [verbal event trigger + ubsequent arguments]?

Examples (against the example question by QG1) • Distractor 1: "binding of PDGF molecules to receptor tyrosine kinases" • Distractor 2: "PDGF stimulates fibroblast" Distractor 3: "platelets release PDGF"

Results and Future Work

Evaluation metrics

- Answer existence: 1 (yes) and 2 (no)

	,		U		/	X				
System	Gram	natical	correc	ctness	Answ	swer existence Inference step				eps
	Ann 1	Ann 2	To	otal	Ann 1	Ann 2	Total	Ann 1	Ann 2	Total
QG1	1.52	1.48		1.50	1.17	1.26	1.21	0.80	0.71	0.76
QG2	2.13	2.07		2.10	1.58	1.75	1.67	0.31	0.20	0.27
MH	1.42	1.25		1.34	1.20	1.14	1.17	0.13	0.19	0.16
			Qı	lestic	on gen	eratio	n			
Sy	System Ann 1 Ann 2 Total				-	System	Ann	1 Ann 2	2 Total	
Q	G1	1.35	1.57	1.46	_	QG1	1.9	8 1.90	0 1.94	-
М	H	1.08	1.13	1.11		MH	1.9	3 1.88	8 1.91	
	ness	_	(b) 1	Distra	ctor qua	ality	_			

ter	m	Grammatical correctness						wer	exist	ence	nce Inference steps			
		Ann	1	Ann	2 To	otal	Ann 1	1 A	nn 2	Total	Ann	1 A	Ann 2	Total
1		1.5	2	1.4	8	1.50	1.1	7	1.26	1.21	0.8	0	0.71	0.76
2		2.1	3	2.0	7	2.10	1.58	3	1.75	1.67	0.3	1	0.20	0.27
I		1.4	2	1.2	5	1.34	1.20)	1.14	1.17	0.1	3	0.19	0.16
	Question generation													
(Sy	stem	A	nn 1	Ann 2	Total	-	Sy	vstem	Ann	1 An	n 2	Total	_
(Q	31		1.35	1.57	1.46	-	Q	G1	1.9	8 1	.90	1.94	_
-	M]	Η		1.08	1.13	1.11		М	Η	1.9	3 1	.88	1.91	
(a) Answer correctness									(b)	Distra	ctor o	qua	lity	_

em	Gran	nn	natical	correc	etness	Ans	swer existence Inference s				rence st	eps
	Ann	1	Ann 2	То	tal	Ann	1 A	Ann 2	Total	Ann 1	Ann 2	Total
	1.5	2	1.48		1.50	1.1'	7	1.26	1.21	0.80	0.71	0.76
	2.1	3	2.07		2.10	1.58	8	1.75	1.67	0.31	0.20	0.27
	1.4	2	1.25		1.34				1.17	0.13	0.19	0.16
Question generation												
Sy	stem	A	.nn 1 A	Ann 2	Total	-	S	System	Ann	1 Ann	2 Total	
Q	G1		1.35	1.57	1.46	-		QG1	1.9	8 1.9	0 1.94	
M	Н		1.08	1.13	1.11		\mathbb{N}	ЛH	1.9	3 1.8	8 1.91	
	(a) A	ns	swer co	orrecti	ness	-		(b)	Distra	ctor qu	ality	_

Observations

- Future work
- Develop an end-to-end system which takes raw text as input.
- Devise more intelligent ways of generating distractors.
- A real user test with non-native English readers.

Acknowledgements

This publication was partly made possible by grant NPRP-08-1337-1-243 from the Qatar National Research Fund (a member of the Qatar Foundation).

Distractor Generation

• Grammatical correctness: 1 (best): no grammatical errors, 2: 1 or 2 grammatical errors, and 3 (worst): 3 or more grammatical errors.

• Answer correctness: 1 (correct), 2 (partially correct), and 3 (incorrect) • Inference steps: the number of semantic relations (event or event coreferences, paraphrases, or negations) humans need to understand • Distractor quality: 1 (worst): confusing due to the overlaps with the

correct answer, 2: easily identified, and 3 (best): viable.

• QG1 often fails to earn inference steps because the answer could exist in the same sentence as the question event with implicit relations. • Distractors are often labeled as 2 ("easily eliminated") because they come from events closely preceding or following the question event.

• Explore more domain-adaptable question generation strategies.

• Automatically carry out one or more of our evaluation processes.