

Rakesh R Menon, Bingqing Wang, Jun Araki, Zhengyu Zhou, Zhe Feng, Liu Ren

CoAug Framework

• Iteratively train models by bootstrapping augmentations available from both models.

Results

Method	BC5CDR	CoNLL-2003	NCBI-Disease	WikiGold
TaLLOR (Li et al., 2021)	59.4 _(3,2)	50.3 _(9.6)	39.3 _(1.5)	23.7 _(4.3)
ProtoBERT (Tänzer et al., 2022)	33.1 _(3.5)	47.3(2.9)	25.5 _(4,4)	37.3(3.8)
CoAug (Tallor + ProtoBERT)	64.4 _(1.5)	65.0 _(0.8)	46.8 _(3.5)	50.6 _(2.1)
QuIP (Jia et al., 2022)	64.9(1.7)	70.6 _(3.7)	75.3 _(0.7)	43.6(2.3)
CoAug (TaLLOR + QuIP)	65.9 _(1.5)	76.8 _(2.0)	50.5 _(4.9)	51.8 _(2.8)

F1 on Test Set for four datasets spanning science-domain and general domain

- CoAug (TaLLOR + ProtoBERT) is better than individual components across datasets ≥ 9.5 F1 points.
- CoAug (TaLLOR + QuIP) is better than QuIP on three datasets.

• On NCBI, noisy weak labels in early iterations result in lower F1 (still higher than TaLLOR).

Performance improvement for CoAug comes from improved recall while maintaining high-precision

Conclusion

- We present an iterative framework that combines the best of neural and rule-based models for low-resource NER.
- Future work will focus at improving robust-ness and efficacy of the framework

Contact: <u>rrmenon@cs.unc.edu</u> Code: <u>https://github.com/boschresearch/CoAug</u>