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Motivation
• NLP tasks are different

• Capture different information

syntax semantics Information content
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Motivation
• NLP tasks are different

• Capture different information
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Motivation
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Motivation
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Motivation

tree-based span-based sequence labeling

SpanRel SpanRel SpanRel

unified model
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A Unified View: Span-relation Representation
• BRAT annotation interface

‣ Spans of one/multiple words with their labels

‣ Labeled relations between span pairs.

event dependencychunkingentity
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Span-oriented Tasks
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Span-oriented Tasks

1. Named entity recognition
Spans are named entities

2. Constituency parsing
Spans are (nested) constituents

3. Part-of-speech tagging
Spans are single-token words

4. Aspect-based sentiment analysis
Spans are aspects
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Relation-oriented Tasks
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Relation-oriented Tasks
5. Relation extraction
Spans are entities.
Relations are their relationships.

6. Coreference resolution
Spans are mentions
Relations are references 

8. Open information extraction
Spans are predicates/arguments
Relations link predicates with arguments
9. Dependency parsing
Spans are words
Relations are their dependencies

7. Semantic role labeling
Spans are predicates/arguments
Relations link predicates with arguments

10. Opinion role labeling
Spans are opinions/holders/targets
Relations link opinions to holders/targets
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SpanRel Model

Barack     Obama       was          born        in         Hawaii
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SpanRel Model

token representation

GloVe

ELMo BERT SpanBERT

span representation

Barack     Obama       was          born        in         Hawaii

++

span/relation predication

argument arg0 predicate

Shared across tasks

Task-specific
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Experimental Settings
• General Language Analysis Datasets (GLAD) benchmark.
• 8 datasets: CoNLL03, WLP, SemEval10, OntoNotes, OIE2016, PTB, SemEval14, 

MPQA 3.0.

• Evaluation metrics.
• Major metric: span-based F1.
• Task-specific metrics.

• Implementation details.
• Token representation: GloVe, ELMo, BERT, SpanBERT.
• Different pruning ratio/max span length for different tasks.
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Comparison with SOTA
• Achieves comparable performances as task-specific SOTA methods
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Multi-task Learning
• Significant improvements on 5/15 tasks with SpanBERT.
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Multi-task Learning
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Multi-task Learning
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Multi-task Learning
• Stronger models show consistent improvements from MTL, weaker models less so.
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Task-relatedness Analysis
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Attn similarity of OpenIE/POS and OpenIE/SRL.             Tasks with similar attention as OpenIE help more.

Tasks are not equally helpful 
to each other.
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Paper: https://arxiv.org/pdf/1911.03822.pdf
Code: https://github.com/neulab/cmu-multinlp

Take away

1. A large variety of NLP tasks can be unified as span-relation prediction problems.

2. Multitask learning across a large number of different tasks helps, and how to 
better reconcile them is a challenging and rewarding future direction.
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