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Distributed word representations

e Low-dimensional dense word vectors learned
from unstructured text

— Based on distributional hypothesis (Harris, 1954)

— Capture semantic and syntactic regularities of
words, encoding word relations
* e.g8., v(king) —v(man)+ v(woman) = v(queen)
— Publicly available, well-developed software:
word2vec and GloVe

— Successfully applied to various NLP tasks



Underlying motivation

* Two variants of the word2vec algorithm by Mikolov et al.
(2013)
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They rely on co-occurrence statistics only
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Motivation: combining word representation learning with
lexical knowledge
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e Limitations

— Places an implicit restriction on relation types
* E.g., synonyms and paraphrases
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— Assumes that w; can be translated into w; by a simple sum
with a single relation vector
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 Limitations

— The assumption can be very restrictive when word
representations are learned from co-occurrence instances
— Not suitable for modeling:

* symmetric relations (e.g., antonymy)
* transitive relations (e.g., hypernymy)



Subspace-regularized word embeddings

* We model each relation type by a low-rank subspace
— This relaxes the constant translation assumption
— Suitable for both symmetric and transitive relations
* Formalization
— Relational knowledge: Ry, = {(wi,r, w;)} V1 <k <m
— Difference vector: d;; = (w; — w;) € R?
— Construct a matrix D;, € R?*|7:l stacking difference vectors
Dyp=[--di--| i j): (wi,rr,wj) € R}
* Assumption: D, is approximately of low rank p

D, ~ U,A, where U, € R¥? and p < d
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Rank-1 subspace regularization

* p=1 =>» Dy=ua where u, € R and o« € R
— All difference vectors for the same relation type are collinear
* Minimizes a Jomt objective:
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 Example: relation “capital-of”
— Our method: v(Berlin) — v(Germany) ~ a{v(Beijin) — v(China)}
— CTM: v(Berlin) — v(Germany) ~ v(Beijin) — v(China)

Beijing Berlin

e

China

Egypt
Germany 11



Optimization for word vectors

* We use parallel asynchronous SGD with negative
sampling
— Each thread works on a predefined segment of the
text corpus by:

e sampling a target word and its local context window, and
e updating the parameters stored in a shared memory

— Puts our regularizer on input embeddings
* Gradient updates by regularization
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Optimization for relation parameters

e Optimizes ur and axr by solving the batch
optimization problem

2
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min
Up, Xk

— Launches a thread that keeps solving the problem

— Alternates between two least-squares sub-
problems foru; and o

— Uses projected gradient descent with an
asynchronous batch update
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Data sets

* Text corpus
— English Wikipedia: ~4.8M articles and ~2B tokens

* Relational knowledge data

— WordRep (Gao et al., 2014)
* 44,584 triplets (w;, r, w)) of 25 relation types from WordNet etc.

— Google word analogy (Mikolov et al., 2013)
* 19,544 quadruplets of a:b::c:d from 550 triplets (w;,, r, w;))
e Relations used for our training
— Split the WordRep triplets randomly to <train>:<test>=4:1

— Remove from <train> triplets containing words in Google
analogy data
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Results (1): Knowledge-base completion

| Relation-type | RELCONST | RELSUB |
. capital-cities 48.15 59.26
¢ TaSk. currency 58.33 50.00
city-in-state 17.88 18.94
— Complete (x, r, y) by gender 44.44 50.00
. . * . . similar-to 5.44 7.26
predicting y* for the missing e A ;
word y given x and r has-context 10.00 8.26
is-a 1.35 1.83
P part-of 17.50 19.00
I nfe rence by R E LS U B instance-of 8.40 12.98
VT - derived-from 9.14 10.27
y - the WOrd CloseSt to the antonym 20.00 20.62
rank-1 subspace x + sr where entails 0 435
causes
| S | < C member-of 13.43 26.87
related-to 0 0
* Inference by RELCONST atiribute 11.76 8.82
SEMANTIC 7.47 8.44
—_ y* = the Word ClOSESt tox+r adjective-to-adverb 10.14 47.83
plural-verbs 61.25 71.77
plural-nouns 66.70 71.89
comparative 70.00 75.00
superlative 66.67 77.78
nationality 85.71 85.71
past-tense 42.20 66.84
present-participle 45.76 47.62
SYNTACTIC 54.88 65.38
TOTAL 24.61 29.03




Results (2): Word analogy

e Task:
— Complete a:b::c:d by predicting d* for the missing
word d given a, b and ¢
* Inference by RELSUB and RELCONST

— d*=the word closesttoc+ b -a

Relation-type | CBOW RELCONST | RELSUB

SEMANTIC | 68.37 69.85 70.96

SYNTACTIC | 66.69 65.42 65.96
TOTAL 67.48 67.43 68.22




Conclusion and future work

e Conclusion

— We present a novel approach for modeling relational
knowledge based on rank-1 subspace regularization

— We show the effectiveness of the approach on
standard tasks

e Future work

— Investigate the interplay between word frequencies
and regularization strength

— Study higher-rank subspace regularization
* Formalization for word similarity

— Evaluate our methods by other metrics including
downstream tasks
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Thank you very much.
Any guestions?
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