

Incorporating Relational Knowledge into Word Representations using Subspace Regularization

Jun Araki (Carnegie Mellon University)

joint work with Abhishek Kumar (IBM Research)

ACL 2016

Distributed word representations

- Low-dimensional dense word vectors learned from unstructured text
 - Based on distributional hypothesis (Harris, 1954)
 - Capture semantic and syntactic regularities of words, encoding word relations
 - e.g., $v(king) v(man) + v(woman) \approx v(queen)$
 - Publicly available, well-developed software: word2vec and GloVe
 - Successfully applied to various NLP tasks

Underlying motivation

- Two variants of the word2vec algorithm by Mikolov et al. (2013)
 - Skip-gram maximizes

$$\frac{1}{T}\sum_{t=1}^{T}\log p(w_{t-c}^{t+c}|w_t) = \frac{1}{T}\sum_{t=1}^{T}\log \frac{\exp(\mathbf{v}_t^{\prime\top}\mathbf{w}_t)}{\sum_{w\in V}\exp(\mathbf{v}^{\prime\top}\mathbf{w}_t)}$$

- Continuous bag-of-words (CBOW) maximizes

$$\frac{1}{T} \sum_{t=1}^{T} \log p(w_t | w_{t-c}^{t+c}) = \frac{1}{T} \sum_{t=1}^{T} \log \frac{\exp(\mathbf{w}_t^{\prime \top} \mathbf{v}_t)}{\sum_{w \in V} \exp(\mathbf{w}^{\prime \top} \mathbf{v}_t)}$$

Underlying motivation

- Two variants of the word2vec algorithm by Mikolov et al. (2013)
 - Skip-gram maximizes

$$\frac{1}{T}\sum_{t=1}^{T}\log p(w_{t-c}^{t+c}|w_t) = \frac{1}{T}\sum_{t=1}^{T}\log \frac{\exp(\mathbf{v}_t^{\prime\top}\mathbf{w}_t)}{\sum_{w\in V}\exp(\mathbf{v}^{\prime\top}\mathbf{w}_t)}$$

- Continuous bag-of-words (CBOW) maximizes

$$\frac{1}{T} \sum_{t=1}^{T} \log p(w_t | w_{t-c}^{t+c}) = \frac{1}{T} \sum_{t=1}^{T} \log \frac{\exp(\mathbf{w}_t^{\prime \top} \mathbf{v}_t)}{\sum_{w \in V} \exp(\mathbf{w}^{\prime \top} \mathbf{v}_t)}$$

• They rely on co-occurrence statistics only

• Motivation: combining word representation learning with lexical knowledge

Prior work (1): Grouping similar words

- Lexical knowledge: {(w_i, r, w_j)}
 - Words w_i and w_i are connected by relation type r

Prior work (1): Grouping similar words

- Lexical knowledge: {(w_i, r, w_j)}
 - Words w_i and w_j are connected by relation type r
- Treats w_i and w_i as generic similar words
 - (Yu and Dredze, 2014; Faruqui et al., 2015; Liu et al., 2015)
 - Regularization effect: $\mathbf{w}_i \approx \mathbf{w}_j \; \forall (w_i, r, w_j)$
 - Based on a (over-)generalized notion of word similarity
 - Ignores relation types

Prior work (1): Grouping similar words

- Lexical knowledge: {(w_i, r, w_j)}
 - Words w_i and w_j are connected by relation type r
- Treats w_i and w_i as generic similar words
 - (Yu and Dredze, 2014; Faruqui et al., 2015; Liu et al., 2015)
 - Regularization effect: $\mathbf{w}_i \approx \mathbf{w}_j \; \forall (w_i, r, w_j)$
 - Based on a (over-)generalized notion of word similarity
 - Ignores relation types

• Limitations

- Places an implicit restriction on relation types
 - E.g., synonyms and paraphrases

Prior work (2): Constant translation model

- CTM models each relation type *r* by a **relation vector** *r*
 - (Bordes et al., 2013; Xu et al., 2014; Fried and Duh, 2014)
 - Regularization effect: $\mathbf{w}_i + \mathbf{r} \approx \mathbf{w}_j \ \forall (w_i, r, w_j)$
 - Assumes that w_i can be translated into w_j by a simple sum with a single relation vector

Prior work (2): Constant translation model

- CTM models each relation type *r* by a **relation vector** *r*
 - (Bordes et al., 2013; Xu et al., 2014; Fried and Duh, 2014)
 - Regularization effect: $\mathbf{w}_i + \mathbf{r} \approx \mathbf{w}_j \; \forall (w_i, r, w_j)$
 - Assumes that w_i can be translated into w_j by a simple sum with a single relation vector
- Limitations
 - The assumption can be very restrictive when word representations are learned from co-occurrence instances
 - Not suitable for modeling:
 - symmetric relations (e.g., antonymy)
 - transitive relations (e.g., hypernymy)

Subspace-regularized word embeddings

- We model each relation type by a **low-rank subspace**
 - This relaxes the constant translation assumption
 - Suitable for both symmetric and transitive relations
- Formalization
 - Relational knowledge: $R_k = \{(w_i, r_k, w_j)\} \ \forall 1 \le k \le m$
 - Difference vector: $\mathbf{d}_{ij} = (\mathbf{w}_j \mathbf{w}_i) \in \mathbb{R}^d$
 - Construct a matrix $\mathbf{D}_k \in \mathbb{R}^{d \times |R_k|}$ stacking difference vectors $\mathbf{D}_k = [\cdots \mathbf{d}_{ij} \cdots] \forall \{(i, j) : (w_i, r_k, w_j) \in R_k\}$
- Assumption: \mathbf{D}_k is approximately of low rank p $\mathbf{D}_k \approx \mathbf{U}_k \mathbf{A}_k^\top$ where $\mathbf{U}_k \in \mathbb{R}^{d \times p}$ and $p \ll d$

Rank-1 subspace regularization

• $\mathbf{p} = \mathbf{1} \rightarrow \mathbf{D}_k \approx \mathbf{u}_k \boldsymbol{\alpha}_k^T$ where $\mathbf{u}_k \in \mathbb{R}^d$ and $\boldsymbol{\alpha}_k \in \mathbb{R}^{|R_k|}$

All difference vectors for the same relation type are collinear

• Minimizes a joint objective:

$$-\frac{1}{T}\sum_{t=1}^{T}\log p(w_t|w_{t-c}^{t+c}) + \frac{\lambda}{2|R|}\sum_{k=1}^{m} \left\|\mathbf{D}_k - \mathbf{u}_k\boldsymbol{\alpha}_k^{\mathsf{T}}\right\|_F^2$$

s.t. $\boldsymbol{\alpha}_k \geq 0 \forall$ asymmetric $r_k, \|\mathbf{u}_k\|_2 = 1, |(\boldsymbol{\alpha}_k)_l| \leq c.$

- Example: relation "capital-of"
 - Our method: $v(Berlin) v(Germany) \approx \alpha \{v(Beijin) v(China)\}$
 - CTM: $v(Berlin) v(Germany) \approx v(Beijin) v(China)$

Optimization for word vectors

- We use parallel asynchronous SGD with negative sampling
 - Each thread works on a predefined segment of the text corpus by:
 - sampling a target word and its local context window, and
 - updating the parameters stored in a shared memory
 - Puts our regularizer on input embeddings
- Gradient updates by regularization

$$\mathbf{w}_{i} \longleftarrow \mathbf{w}_{i} - \eta \frac{\lambda}{|R|} \left[\sum_{j:(w_{i}, r_{k}, w_{j}) \in R} \left(\mathbf{w}_{i} - \mathbf{w}_{j} + \mathbf{u}_{k} \alpha_{k_{ij}} \right) + \sum_{j:(w_{j}, r_{k}, w_{i}) \in R} \left(\mathbf{w}_{i} - \mathbf{w}_{j} - \mathbf{u}_{k} \alpha_{k_{ji}} \right) \right]$$

Optimization for relation parameters

• Optimizes \mathbf{u}_k and $\boldsymbol{\alpha}_k$ by solving the batch optimization problem

$$\min_{\mathbf{u}_k, \boldsymbol{\alpha}_k} \left\| \mathbf{D}_k - \mathbf{u}_k \boldsymbol{\alpha}_k^{\top} \right\|_F^2, \text{ s.t. } \|\mathbf{u}_k\|_2 = 1, |\boldsymbol{\alpha}_k| \le c$$

- Launches a thread that keeps solving the problem
- Alternates between two least-squares subproblems for \mathbf{u}_k and $\boldsymbol{\alpha}_k$
- Uses projected gradient descent with an asynchronous batch update

Data sets

- Text corpus
 - English Wikipedia: ~4.8M articles and ~2B tokens
- Relational knowledge data
 - WordRep (Gao et al., 2014)
 - 44,584 triplets (w_i, r, w_j) of 25 relation types from WordNet etc.
 - Google word analogy (Mikolov et al., 2013)
 - 19,544 quadruplets of *a*:*b*::*c*:*d* from 550 triplets (*w_i*, *r*, *w_j*)
- Relations used for our training
 - Split the WordRep triplets randomly to <train>:<test> = 4:1
 - Remove from <train> triplets containing words in Google analogy data

Results (1): Knowledge-base completion

- Task:
 - Complete (x, r, y) by predicting y* for the missing word y given x and r
- Inference by RELSUB
 - y^* = the word closest to the rank-1 subspace x + sr where $|s| \le c$
- Inference by RELCONST

 $-y^*$ = the word closest to x + r

Relation-type	RELCONST	RELSUB
capital-cities	48.15	59.26
currency	58.33	50.00
city-in-state	17.88	18.94
gender	44.44	50.00
similar-to	5.44	7.26
made-of	0	0
has-context	10.00	8.26
is-a	1.35	1.83
part-of	17.50	19.00
instance-of	8.40	12.98
derived-from	9.14	10.27
antonym	20.00	20.62
entails	0	4.35
causes	0	0
member-of	13.43	26.87
related-to	0	0
attribute	11.76	8.82
SEMANTIC	7.47	8.44
adjective-to-adverb	10.14	47.83
plural-verbs	61.25	71.77
plural-nouns	66.70	71.89
comparative	70.00	75.00
superlative	66.67	77.78
nationality	85.71	85.71
past-tense	42.20	66.84
present-participle	45.76	47.62
SYNTACTIC	54.88	65.38
TOTAL	24.61	29.03

Results (2): Word analogy

- Task:
 - Complete a:b::c:d by predicting d* for the missing word d given a, b and c
- Inference by RELSUB and RELCONST

 $-d^*$ = the word closest to c + b - a

Relation-type	CBOW	RELCONST	RELSUB
SEMANTIC	68.37	69.85	70.96
SYNTACTIC	66.69	65.42	65.96
TOTAL	67.48	67.43	68.22

Conclusion and future work

Conclusion

- We present a novel approach for modeling relational knowledge based on rank-1 subspace regularization
- We show the effectiveness of the approach on standard tasks

Future work

- Investigate the interplay between word frequencies and regularization strength
- Study higher-rank subspace regularization
 - Formalization for word similarity
- Evaluate our methods by other metrics including downstream tasks

Thank you very much. Any questions?