
Incorporating Relational Knowledge 
into Word Representations using 

Subspace Regularization 

Jun Araki (Carnegie Mellon University) 
 

joint work with Abhishek Kumar (IBM Research) 
 

ACL 2016 



Distributed word representations 

• Low-dimensional dense word vectors learned 
from unstructured text 

– Based on distributional hypothesis (Harris, 1954) 

– Capture semantic and syntactic regularities of 
words, encoding word relations 

• e.g.,  

– Publicly available, well-developed software: 
word2vec and GloVe 

– Successfully applied to various NLP tasks 
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Underlying motivation 
• Two variants of the word2vec algorithm by Mikolov et al. 

(2013) 
– Skip-gram maximizes 

 
 
 

– Continuous bag-of-words (CBOW) maximizes 
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Underlying motivation 
• Two variants of the word2vec algorithm by Mikolov et al. 

(2013) 
– Skip-gram maximizes 

 
 
 

– Continuous bag-of-words (CBOW) maximizes 
 
 
 

• They rely on co-occurrence statistics only 
 
 

• Motivation: combining word representation learning with 
lexical knowledge 
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Prior work (1): Grouping similar words 

• Lexical knowledge: {(wi, r, wj)} 
– Words wi and wj are connected by relation type r 
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• Limitations 

– Places an implicit restriction on relation types 
• E.g., synonyms and paraphrases 
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Prior work (2): Constant translation model 
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• CTM models each relation type r by a relation vector r 
– (Bordes et al., 2013; Xu et al., 2014; Fried and Duh, 2014) 

– Regularization effect: 

– Assumes that wi can be translated into wj by a simple sum 
with a single relation vector 



Prior work (2): Constant translation model 

• CTM models each relation type r by a relation vector r 
– (Bordes et al., 2013; Xu et al., 2014; Fried and Duh, 2014) 

– Regularization effect: 

– Assumes that wi can be translated into wj by a simple sum 
with a single relation vector 

 

• Limitations 
– The assumption can be very restrictive when word 

representations are learned from co-occurrence instances 

– Not suitable for modeling: 
• symmetric relations (e.g., antonymy) 

• transitive relations (e.g., hypernymy) 
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Subspace-regularized word embeddings 

• We model each relation type by a low-rank subspace 
– This relaxes the constant translation assumption 

– Suitable for both symmetric and transitive relations 

• Formalization 
– Relational knowledge: 

– Difference vector: 

– Construct a matrix                       stacking difference vectors 

 

• Assumption: Dk is approximately of low rank p 
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Rank-1 subspace regularization 
• p = 1   

– All difference vectors for the same relation type are collinear 

• Minimizes a joint objective: 
 
 
 
 

• Example: relation “capital-of” 
– Our method:  
– CTM:  
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Cairo 
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Optimization for word vectors 

• We use parallel asynchronous SGD with negative 
sampling 
– Each thread works on a predefined segment of the 

text corpus by: 
• sampling a target word and its local context window, and 
• updating the parameters stored in a shared memory 

– Puts our regularizer on input embeddings 

• Gradient updates by regularization 
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Optimization for relation parameters 

• Optimizes      and      by solving the batch 
optimization problem 

 

– Launches a thread that keeps solving the problem 

– Alternates between two least-squares sub-
problems for      and 

– Uses projected gradient descent with an 
asynchronous batch update 
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Data sets 
• Text corpus 

– English Wikipedia: ~4.8M articles and ~2B tokens 

• Relational knowledge data 
– WordRep (Gao et al., 2014) 

• 44,584 triplets (wi, r, wj) of 25 relation types from WordNet etc. 

– Google word analogy (Mikolov et al., 2013) 
• 19,544 quadruplets of a:b::c:d from 550 triplets (wi, r, wj) 

• Relations used for our training 
– Split the WordRep triplets randomly to <train>:<test> = 4:1 

– Remove from <train> triplets containing words in Google 
analogy data 
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Results (1): Knowledge-base completion 

• Task: 
– Complete (x, r, y) by 

predicting y* for the missing 
word y given x and r 

• Inference by RELSUB 
– y* = the word closest to the 

rank-1 subspace x + sr where 
|s|≤ c 

• Inference by RELCONST 
– y* = the word closest to x + r 
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Results (2): Word analogy 

• Task: 

– Complete a:b::c:d by predicting d* for the missing 
word d given a, b and c 

• Inference by RELSUB and RELCONST 

– d* = the word closest to c + b - a 
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Conclusion and future work 

• Conclusion 
– We present a novel approach for modeling relational 

knowledge based on rank-1 subspace regularization 
– We show the effectiveness of the approach on 

standard tasks 

• Future work 
– Investigate the interplay between word frequencies 

and regularization strength 
– Study higher-rank subspace regularization 

• Formalization for word similarity 

– Evaluate our methods by other metrics including 
downstream tasks 
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Thank you very much. 
Any questions? 
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